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ABSTRACT

Motivation: Increasing attention has been devoted to estimation of
species-level phylogenetic relationships under the coalescent model.
However, existing methods either use summary statistics (gene trees)
to carry out estimation, ignoring an important source of variability in
the estimates, or involve computationally-intensive Bayesian Markov
chain Monte Carlo algorithms that don’t scale well to whole-genome
data sets.

Results: We develop a method to infer relationships among quartets
of taxa under the coalescent model using techniques from algebraic
statistics. Uncertainty in the estimated relationships is quantified
using the nonparametric bootstrap. The performance of our method
is assessed with simulated data. We then describe how our method
could be used for species tree inference in larger taxon samples, and
demonstrate its utility using data sets for Sistrurus rattlesnakes and
for soybeans.

Availability and Implementation: The method to infer the
phylogenetic relationship among quartets is implemented in the
software SVDquartets, available at
www.stat.osu.edu/~lkubatko/software/SVDquartets.

Contact: Laura Kubatko, Ikubatko@stat.osu.edu

1 INTRODUCTION

With recent advances in DNA sequencing technology, it is now
common to have available alignments from multiple genes for
inference of an overall species-level phylogeny. While this species
tree is generally the object that we seek to estimate, it is widely
known that each individual gene has its own phylogeny, called
a gene tree, which may not agree with the species tree. Many
possible causes of this gene incongruence are known, including
horizontal gene transfer, gene duplication and loss, hybridization,
and incomplete lineage sorting (ILS) (Maddison, 1997). Of these,
the best studied is incomplete lineage sorting, which is commonly
modeled by the coalescent process (Kingman, 1982a,b; Liu et al.,
2009a). Much recent effort has been devoted to the development
of methods to estimate species-level phylogenies from multi-locus
data under the coalescent model (Liu and Pearl, 2007; Liu et al.,
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2009b; Kubatko et al., 2009; Heled and Drummond, 2010; Than
and Nakhleh, 2009; Bryant et al., 2012).

Here we consider this basic problem, although our approach to
the problem differs from previous approaches in several important
ways. Previous approaches can be divided into two groups (Liu
et al., 2009a): summary-statistics approaches and sequence-based
approaches. Summary-statistics approaches first estimate a gene
tree independently for each gene, and then treat the estimated gene
trees as data for a second stage of analysis to estimate the species
tree. The most popular approaches in this category are Maximum
Tree (Liu et al., 2009b) (also implemented in the program STEM
(Kubatko et al., 2009)), STAR (Liu et al., 2009¢), STEAC (Liu
et al., 2009c), MP-EST (Liu et al., 2010), and Minimize Deep
Coalescences (MDC; as implemented in the program PhyloNet
(Than and Nakhleh, 2009)). These methods are computationally
efficient for large data sets, but generally ignore variability in the
estimated gene trees and thus potentially lose accuracy. The second
group of methods uses the full data for estimation of the species tree
via a Bayesian framework for inference. The three most common
methods in this group, BEST (Liu and Pearl, 2007), *BEAST
(Heled and Drummond, 2010), and SNAPP (Bryant et al., 2012), all
seek to estimate the posterior distribution for the species tree using
Markov chain Monte Carlo (MCMC), but differ in some details of
the implementation. These methods become time-consuming when
the number of loci is large, and assessment of convergence of the
MCMC can be difficult.

Our proposed method is distinct from both classes of existing
approaches in that it uses the full data directly, but does not utilize
a Bayesian framework. It is thus computationally efficient while
incorporating all sources of variability (both mutational variance
and coalescent variance (cf. Huang et al. (2010))) in the estimation
process. The theory underlying our method applies to unlinked
Single Nucleotide Polymorphism (SNP) data, for which each site
is assumed to have its own genealogy drawn from the coalescent
model; however, we use simulation to show that the method
also performs well for multi-locus sequence data. To describe our
proposed method, we first begin with a brief overview of the
coalescent model in the context of species-level phylogenetics. We
use simulation to assess the performance of the method for both
simulated and empirical data. We conclude with a short discussion
of how the proposed method can be scaled up to larger taxon sets
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e Valid: 12|34
o Not valid: 13/24
1423

Fig. 1. Example four-taxon phylogeny. Split 12|34 is valid, since the subtree
consisting of taxa 1 and 2 does not overlap the subtree consisting of taxa 3
and 4. The two non-valid splits for this tree are 13|24 and 14/23.

for estimation of species phylogenies in a coalescent framework,
and apply it to two empirical data sets.

1.1 Site Pattern Probability Distributions Under the
Coalescent Model

The coalescent model can be used to compute the probability
distribution of gene trees given a particular species tree and set
of speciation times (which determine species tree branch lengths).
Both the discrete probability distribution on the space of gene tree
topologies (Degnan and Salter, 2005) and the probability density
on the space of gene trees with branch lengths (Rannala and
Yang, 2003) have been derived recently. Using these probability
distributions, it is possible to compute the probability distribution
on data patterns at the tips of a species tree. Let X g be the observed
state in the data at tip H, and, referring to the tree in Figure 1, for
example, define p;;x; as

P =P(X1=1,Xo =3, X3 =k Xy =1) )

fori,j,k,l € {A,C,G,T}. In order to compute the probability
distribution {ps;rilt,J, k,0 € {A,C,G,T}}, we need the
following: (1) a species phylogeny, with speciation times specified;
and (2) a model for sequence evolution along a gene tree, e.g., the
General Time Reversible (GTR) model (Tavare, 1986) or the Jukes-
Cantor (JC69) model (Jukes and Cantor, 1969). See DeGiorgio and
Degnan (2010) for an example of how to carry out this computation
for a two-state model. The details of the calculation for arbitrary k-
state models can be found in Chifman and Kubatko (2014). We now
describe how this probability distribution can be used to compute
a score on a quartet of taxa that can identify the true quartet
relationship. To begin, we define a split of a phylogenetic tree as
follows.

Definition: A split of a set of taxa £ is a bipartition of £ into two
non-overlapping subsets L1 and Lo, denoted L1 |La. A split L1| Lo
is valid for tree 7T’ if the subtrees containing the taxa in L; and in
L2 do not intersect.

For a quartet of taxa, we consider splits for which |L,| = 2
(and thus necessarily |L2| = 2), e.g., we consider splitting the
four taxa into two groups of two. For example, consider a valid
split L1|L2, where L1 = {1,2} and L» = {3,4} (Figure 1).
Under this partition, we can display the probability distribution
P = {pirili, 4, k,1 € {A,C,G,T}} in the form of a flattening
along a split L1 | L2, denoted by Flaty,, |Ls (P), as follows:

PAAAA PAAAC PAAAG DPAAAT PAACA - DPAATT
PACAA DPACAC PACAG PACAT PACCA -+ PACTT
PAGAA DPAGAC PAGAG PAGAT PAGCA -+ PAGTT
PATAA PATAC PATAG PATAT PATCA - PATTT
PCAAA DPCAAC PCAAG PCAAT PCACA +°+ PCATT
PTTAA PTTAC PTTAG PTTAT PITTCA = PITIT

In the above 16 x 16 matrix, the rows correspond to the possible
nucleotides for the two taxa in set L; and the columns correspond
to the possible nucleotides for the two taxa in set L. For more
information about flattening of a tensor P for the general Markov
model on a gene tree, see Allman and Rhodes (2008). Using this
representation, we make use of the following result for species tree
inference under the coalescent.

Theorem 1 [Chifman and Kubatko, 2014]

Let C denote the class of coalescent models under the four-
state GTR model on a four-taxon binary species tree. For a
valid split Li|Lz, rank(Flaty,, |z, (P)) < 10 for all distributions
P arising from C. For a non-valid split L,|L2, generically,
rank(Flaty,, z, (P)) > 10.

We note that the above theorem implies generic identifiability of
the unrooted species tree topology for four taxa under the coalescent
model (Chifman and Kubatko, 2014). By “generic” we mean that
the set of parameters on which the model is non-identifiable is a
subset of a proper subvariety of measure zero. In addition, we have
established generic identifiability of the unrooted n-taxon species
tree under the coalescent model from the induced quartets (Chifman
and Kubatko, 2014).

2 METHODS
2.1 Inferring Splits Using Singular Value
Decomposition

Our goal is to use the result of Theorem 1 to infer species
phylogenies. Assume that the available data consist of a large
sample of unlinked SNPs, which we can use to construct an estimate

of the matrix Flaty,|r,(P). We call this matrix Flatr, |z, (P),
and define this matrix by

Pasasa Daaac DPaaac DPaaar Daaca -+ Paarr
Pacaa Pacac Dacac Pacar Pacca -+ Pacrr
Pacaa Pacac Dacac Pacar Pacea -+ PacrT
PaTaa DParac Darac Parar DParca - ParTT
PocaaAs PoAAC DCAAG PCAAT PcAaca -+ PCATT
prras Prrac Prrac Prrar Prroa - PrrTT

where P; i is the frequency with which we observe the event
{X1 = i,X2 = j,Xs = k,X4 = {} in the data, where
Ly ={1,2} and L> = {3,4}. A key observation is that this can be
rapidly tabulated for quartets of taxa even for data sets of very large
size.
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We want to infer which of the three possible splits on quartets
is the true split. One way to assess this would be to consider the
Flaty,) LQ(}E’) matrix for each of the three possible splits, and
measure which of the three is closest to a rank 10 matrix. To do
this, we need a method to measure distances between matrices. Our
choice of a distance, described below, is modeled after the approach
of Eriksson (2005), who considered the problem of tree estimation
from a flattening matrix obtained from the probability distribution
of site patterns at the tips of a gene tree. His overall approach to
estimation of the phylogeny differed from ours, however, in that
he used splits of varying sizes (rather than just splits of quartets of
taxa) to develop a clustering algorithm to obtain the phylogenetic
estimate. We provide the details of our approach below.

Let a;; be the (i, 7)" entry of an m x n matrix A. The Frobenius
norm of a matrix A is

[Allr =

An important property of the Frobenius norm is its characterization
using the singular values of A, that is

where 01 > 02 > -+ > 0p > 0 are the singular values of A and
p = min{m, n}.

The well-known low-rank approximation theorem (Eckart-Young
theorem), implies that the distance from a matrix A to the nearest
rank k matrix in the Frobenius norm is

min ||A— B|lr =
rank(B)=k

See Section 2.4 in Golub and Van Loan (2013) for more information
about singular value decomposition.

We apply this well-known result to our species tree estimation
problem by defining the SVD score for a split L1 |Ls to be

SVD(L1|Ls) := )

where &; are the singular values of FlatL1|L2(P), for i €
{11,...,16}. Our proposal for inferring the true species-level
relationship within a sample of four taxa is thus the following. For
each of the three possible splits, construct the matrix Flatr, |z, (P)
and compute SVD(L1|L2). The split with the smallest score is taken
to be the true split.

To quantify uncertainty in the inferred split, we implement
a nonparametric bootstrap procedure as follows. For a data set
consisting of M aligned sites, we re-sampled the columns of
the data matrix with replacement )M times to generate a new
bootstrapped data matrix, and the SVD scores of the three splits
are computed for this bootstrapped data matrix. This procedure
is repeated B times, and the proportion of bootstrapped data sets
that support each of the three possible splits provides a measure of
support for that split.

2.2 Simulation Study

We first use simulated data to assess the ability of SVD(L1|L2)
to correctly identify the valid split under a variety of conditions.
Before describing the simulation procedure, we first point out that
while much of the currently available methodology for inferring
species trees assumes that multi-locus data (e.g., aligned DNA
sequences from many independent loci) are available for inference,
our method is actually designed for unlinked sites, for example,
for a sample of unlinked SNPs. This is because in computing the
probability distribution of site patterns at the tips of the species tree,
we integrate over the probability distribution of gene trees under
the coalescent model, with the implicit assumption that sequence
data evolve along these gene trees. Thus each site pattern is viewed
as an independent draw from the distribution f(X; = i, Xo =
5 X3 = kXy = 18) = [f(X1 = i,X2 = §,X3 =
k,Xs = I|G)f(G|S)dG, where S represents the species tree
(topology and speciation times) and G represents a gene tree (both
topology and divergence times). True multi-locus data, however,
consist of an aligned portion of the DNA that is believed to share
a single underlying gene tree, and thus all sequence data within a
locus are believed to have evolved from a common gene genealogy.

We wish to examine the performance of our method for both
unlinked SNP data and for multi-locus data, and we thus consider
simulated data of two types: unlinked SNP data (e.g., each site
has its own underlying gene tree) and multi-locus data (a sequence
of length [ is simulated from a shared underlying gene tree). Our
simulation consists of the following steps:

1. Generate a sample of g gene trees from the model species tree
((1:x,2:x):x,(3:x,4:x):x), where x is the length of each branch,
under the coalescent model using the program COAL (Degnan
and Salter, 2005).

2. Generate sequence data of length n on each gene tree under
a specified substitution model using the program Seq-Gen
(Rambaut and Grassly, 1997).

3. Construct the flattening matrix for each of the three possible
splits, and compute SVD(L1|L2) for each.

4. Repeat the above procedure (Steps 1 — 3) 1,000 times and
record SVD(L1|L2)k, k = 1,2,...,1,000, for each split. For
each of the 1,000 data sets, generate B bootstrapped data
sets and record SVD(L1|L2)kp, k = 1,2,...,1,000;b =
1,2,..., B for each split.

Given the above simulation algorithm, there are several choices
to be made at each step. In step (1), we must select the lengths of
the branches, z, in the model species tree. We considered branches
of length 0.5, 1.0, and 2.0 coalescent units. A branch of length 0.5
coalescent units is very short, and corresponds to a case in which
there will be widespread incomplete lineage sorting, making species
tree inference difficult. A branch of length 2.0 coalescent units is
longer and will result in much lower rates of incomplete lineage
sorting, resulting in an easier species tree inference problem.

In Step (2), we need to choose the gene length, n. In simulating
unlinked SNP data, we used g = 5,000 and n = 1 (corresponding
to 5,000 unlinked SNPs) and for the multi-locus setting, we
considered g = 10 and n = 500 (corresponding to 10 genes,
each of length 500 sites). Further, step (2) requires choice of
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Fig. 2. Simulation results for the JC69 model. The top row gives the results
for 5,000 unlinked SNP sites and the bottom row gives the results for 10
genes with 500 sites each. The columns correspond to differing branch
lengths in the model species tree. The first boxplot in each subfigure shows
the distribution of SVD scores for the true split, while the next two boxplots
show the distribution for the two false splits.

substitution model to be used to simulate sequence data on the
sampled gene trees. We considered two possibilities: the Jukes-
Cantor model (JC69) (Jukes and Cantor, 1969) and the GTR model
with a proportion of invariant sites and with Gamma-distributed
mutation rates across sites (GTR+I+T") (Tavare, 1986). In particular,
we use the Seq-Gen options —-mGTR -r 1.0 0.2 10.0 0.75 3.2 1.6 -f
0.15 0.35 0.15 0.35 -1 0.2 -a 5.0 -g 3 to simulate under GTR+I+I".
Because the theoretical results in Section 2.1 were derived under the
GTR model and associated sub-models (such as JC69), we expect
our method to handle the JC69 case well. However, we have not
derived results under models in which there are invariant sites or
rate variation among sites, so the simulations under the GTR+I+T
setting will test robustness of the method to these evolutionary
processes. In Step (4), we set B = 100.

We carry out one additional simulation to examine the ability of
the method to identify the true split for varying overall data set sizes.
‘We consider unlinked SNP data with 1,000, 5,000, or 10,000 sites
(g = 1,000, 5,000, or 10,000 and n = 1 in all cases). We used the
JC69 model and considered branch lengths of x = 0.5, 1.0, and 2.0.
We recorded the time it took to carry out each of these simulations
in order to assess how computation time scales with the size of the
data set.

2.3 Application to Rattlesnake Data

We have also explored the use of our quartet inference method in
constructing larger species-level phylogenies, and we show here
the results of applying the method to a data set consisting of 19
genes sampled in 26 rattlesnakes from 4 distinct species: Sistrurus
catenatus (with subspecies S. c. catenatus, S. c. edwardsii, and
S. ¢. tergeminus); S. miliarius (with subspecies S. m. miliarius,
S. m. barbouri, and S. m. streckeri); and two outgroup species,
Agkistrodon contortrix and A. piscivorus. This data set has
been previously analyzed by Kubatko et al. (2011), and details
concerning the loci used and the assembly of the aligned data

i i —
12f34 1324 1423 12[34 13024 14]23 12[34 1324 14]23

Fig. 3. Simulation results for the GTR+I+1" model. The top row gives results
for 5,000 unlinked SNP sites and the bottom row gives the results for 10
genes with 500 sites each. The columns correspond to differing branch
lengths in the model species tree. The first boxplot in each subfigure shows
the distribution of SVD scores for the true split, while the next two boxplots
show the distribution for the two false splits.
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Fig. 4. Bootstrap results for the JC69 model simulations. Each boxplot
shows the distribution of the bootstrap support values for each of the three
possible splits for the simulated data shown in Figure 2.

matrix can be found there. Here we note that the sequences were
computationally phased, so that each individual is represented by
two distinct sequences in the data set, for a total of 52 sequences
and 8,466 aligned nucleotide positions in the complete data matrix.

To conduct the analysis, we randomly sampled 20,000 quartets
from the 52 sequences, and used the SVD score to infer the
true quartet relationship for each sampled quartet. The quartet
assembly program Quartet MaxCut (Snir and Rao, 2012) was used
to construct phylogenies from the inferred quartets in two ways.
First, a lineage tree was constructed by direct application of Quartet
MaxCut. Second, a species-level phylogeny was constructed by
replacing the labels of the lineages for the sampled quartets with
the subspecies to which they belonged prior to application of
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Fig. 5. Bootstrap results for the GTR+I+1" simulations. Each boxplot shows
the distribution of the bootstrap support values for each of the three possible
splits for the simulated data shown in Figure 3.

Quartet MaxCut. Finally, a bootstrap analysis was carried out by
generating 100 bootstrapped data sets from the original matrix and
applying this entire procedure to each bootstrapped data set. The
complete analysis, including data simulation, bootstrapping and
quartet assembly, took approximately 23 hours in serial on a desktop
linux machine (2x Quad Core Xeon E5520 / 2.26GHz / 32GB).

2.4 Application to Soybean Data and Comparison to
SNAPP

To demonstrate the utility of our method further, we used a
previously published data set consisting of 17 wild soybean types
(Glycine soja) and 14 cultivated soybean types (G. max) with
6,289,747 SNP loci. The original analysis was performed by Lam
et al. (2010), and the data were later reanalyzed by Lee et al.
(2014). We also carried out computations in SNAPP (Bryant et al.,
2012), which is suitable for the soybean data set since it consists
of SNP (rather than multilocus) data, to compare the run times.
SNAPP infers the species tree using the coalescent model and is
designed for biallelic data consisting of unlinked SNPs (Bryant et
al., 2012). Even though our extended SVDquartets method to infer
species trees can handle the entire data set including missing data,
in order to make a proper and fair comparison with SNAPP we
have removed all missing data and ambiguous sites, resulting in
1,027,026 SNP loci. We also subsampled 10 of the 31 species (4
cultivars and 6 wild types) in order to run the analysis in SNAPP in
a feasible timeframe. The formatted data sets used for the analyses
with SNAPP and SVDquartets are given in Supplemental Files 2
and 3, respectively. We conducted the analysis using SVDquartets
in an analogous way to that for the rattlesnakes, with 20,000 quartets
sampled and 100 bootstrap replicates.

3 IMPLEMENTATION

We have written a program in the C language, SVDquartets, which
will compute SVD(L1|L3) for the three possible splits in a sample
of four taxa. The program takes as its input an alignment of four

12[34 split, branch lengths = 0.5
13|24 split, branch lengths = 0.5
14[23 split, branch lengths = 0.5
12[34 split, branch lengths = 1.0
13|24 split, branch lengths = 1.0
14[23 split, branch lengths = 1.0
12[34 split, branch lengths = 2.0
13|24 split, branch lengths = 2.0
14]23 split, branch lengths = 2.0

0.004
¢uddtdity

Median SVD Score

1000 5000 10000
Number of SNP Sites

Fig. 6. Simulation results for data consisting of 1,000, 5,000, or 10,000
unlinked SNP sites for trees with branch lengths of 0.5 coalescent units
(solid lines), 1.0 coalescent units (dashed lines), or 2.0 coalescent units
(dotted lines). The median SVD score (over 1,000 replicates) for the valid
split 12|34 is shown in red, while the scores for the two non-valid splits are
shown in blue and green.

taxa in PHYLIP format, and produces a file that contains a list of
the three splits and their associated scores. The program is available
from http://www.stat.osu.edu/~lkubatko/software/S VDquartets/.

4 RESULTS AND DISCUSSION
4.1 Simulation Study

Figures 2 and 3 show boxplots of the SVD scores for each of
the three possible splits among four taxa under various simulation
conditions. It is immediately clear that in all cases the SVD score
can easily differentiate between the valid and non-valid splits, with
the boxplot corresponding to the valid split displaying scores that
are uniformly lower than the scores for the non-valid splits. The
separation of scores for valid vs. non-valid splits becomes more
pronounced as the branch lengths in the species tree increase, as
expected, and is, in general, greater for the unlinked SNP data than
for the multi-locus data, although the separation is very clear even
for the multi-locus data.

Similarly, the JC69 model with no invariant sites and no rate
variation across sites provides the best separation of scores between
valid and non-valid splits. The worst performance observed was for
the simulation conditions in which the data were simulated under
GTR+I+I" in the multi-locus setting, which is not unexpected as
this violates the theoretical conditions in two ways (the invariant
sites and variable rates across sites AND the multi-locus rather than
unlinked SNP data). However, even in this case, the separation in
scores is clear, and with sufficiently long species tree branch lengths,
there is essentially no overlap in scores in valid vs. non-valid splits.

Figures 4 and 5 show boxplots of the bootstrap support values
associated with each of the three splits under all simulation
conditions. In the case of the JC69 model (Figure 4), the true split
is nearly always associated with 100% bootstrap support for both
unlinked SNP data and for multi-locus data. For data simulated
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Table 1. Time information for the simulation study with results shown in
Figure 6. All results represent the average time in seconds (over 1,000
replicates) to carry out the computation of three SVD scores for the
simulated data sets, and were obtained using the UNIX t ime command.

Branch Number of  Real User  System

Lengths Sites Time Time Time
0.5 1,000 0.0495 0.0092 0.0075
0.5 10,000 0.0566 0.0155 0.0077
1.0 1,000 0.0502 0.0105 0.0074
1.0 10,000 0.0564 0.0163 0.0076
2.0 1,000 0.0500 0.0119 0.0061
2.0 10,000 0.0553 0.0173 0.0064

under the GTR+I+I" model, however, bootstrap support values for
the true split are sometimes lower, with the worst results occurring
when the branch lengths are short. Overall, however, the bootstrap
appears to give a reliable measure of support for the true split,
particularly when the model assumptions are satisfied.

Figure 6 examines the performance of the method for unlinked
SNP data with varying numbers of sites. In particular, unlinked
SNP data sets were generated with either 1,000, 5,000, or 10,000
total sites under model species trees with branch lengths of 0.5, 1.0,
or 2.0 coalescent units. These results demonstrate that the method
performs well even for smaller sample sizes. However, it is clear
that as the sample size becomes larger, the separation between the
scores for the valid and non-valid splits increases. This is to be
expected, because the matrix Flatr,, |, (P) will better approximate
Flaty, L, (P) for larger sample sizes.

Table 1 gives timing results for the simulations carried out
in Figure 6. Because the main work undertaken by the method
involves counting the number of site patterns in order to build the
Flaty, L, (]3) matrix, the time should be approximately linear in
the number of unique site patterns in the data, which is related to
both the total number of sites in the data matrix and the overall
scale of time represented by the phylogeny. The results in Table
1 demonstrate that the time is less than linear in the total number of
site patterns, as expected, and that the computations can be carried
out very rapidly (e.g., the computation of three SVD scores for data
matrices of 10,000 sites takes less than 0.1 seconds).

4.2 Potential Use for Species Tree Inference

These results make it clear that the SVD score is a highly accurate
means of inferring the correct, unrooted phylogenetic tree among a
set of four taxa. We note that the SVD score is extremely easy to
compute. It requires only counting the site patterns and constructing
the matrix Flaty, |z, (P). Computing singular values of a 16 x 16
matrix is a standard calculation that any mathematical or statistical
software package can easily implement. Our software, SVDquartets,
carries out both steps using a PHYLIP-formatted input file.

Given the efficiency with which computations can be carried
out in the four-taxon setting, this method is a good candidate for
estimation of species trees for larger taxon sets. We propose that
the method could be used in the following way. For a data set
with 7" taxa, form all samples of 4 taxa, or sample sets of 4 taxa

if T is large. For each sample of four taxa, infer the valid split
using the SVD score. Using the collection of inferred valid splits,
construct a species tree estimate using a quartet assembly method.
Substantial previous work and software exist for the problem of
quartet assembly (see, e.g., Strimmer and von Haeseler (1996);
Strimmer et al. (1997); Snir and Rao (2012)). We give the results
of using this method for inferring a tree consisting of several North
American rattlesnake species and for inferring a tree from SNP data
for several soybean species below.

This method has tremendous potential to improve the set of
tools available for species tree inference. Unlike summary statistics
methods, which are known to be quick but fail to model variability
in individual gene tree estimates, this method uses the sequence
data directly, thus incorporating all sources of variability. The
other existing methods based on sequence data (BEST, *BEAST,
and SNAPP) all rely on Bayesian MCMC methods, and thus
require long computing times and the difficult problem of assessing
convergence. Our method can be carried out rapidly, and is easily
parallelizable, as each quartet can be analyzed on a separate
processor. Our method can handle both unlinked SNP and multi-
locus data, again providing an advantage over existing sequence-
based methods, which can handle either SNP (SNAPP) or multi-
locus (BEST and *BEAST) data. Bootstrapping can be easily
implemented to provide a means of quantifying support for the
estimated phylogeny.

However, there are several issues with this method that will need
to be examined in future work. First, the number of quartets to be
sampled needs to be specified in cases where the number of taxa
is too large to examine all possible quartets. This number should
necessarily increase with increasingly large taxon samples, but we
have not yet rigorously examined how to select this. In addition, it
is worth pointing out that the method estimates the topology only.
In some studies, other parameters associated with the evolutionary
process, such as branch lengths and effective population sizes,
will also be of interest. One possibility is that the tree topology
could first be estimated with this method, and then fixed in a
subsequent MCMC analysis with either *BEAST or SNAPP, thus
greatly reducing the complexity of that analysis. Finally, we have
not yet conducted a thorough simulation study of the inferential
accuracy of this method for full species tree inference, which will
be the topic of future work.

4.3 Application to Rattlesnake Data

The results of the analysis of the rattlesnake data set are shown in
Figure 7, with bootstrap support values above 50% indicated on the
appropriate nodes. In the case of the lineage tree (Figure 7(a)), the
method identifies the two major species S. catenatus and S. miliarius
with high bootstrap support, and additionally groups the subspecies
S. ¢. catenatus as monophyletic. In the species tree in Figure 7(b),
we again see that the method correctly identifies the two species
with high bootstrap support, and is able to differentiate subspecies
S. ¢. catenatus from a clade containing the other two subspecies
within this group. Within species S. miliarius, there is not strong
support for the subspecies relationships.

These results are consistent with the earlier analyses of Kubatko
et al. (2011), in which strong support for the delimitation of S. c.
catenatus as a distinct species was found using several methods of
coalescent-based species tree inference. Those analyses also found
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Fig. 7. Results of the analysis of the rattlesnake data. In (a), the tree relating all 52 lineages is shown. Colors indicate subspecies membership: Scc = 8. c.
catenatus (green); Sce = S. ¢. edwardsii (red); Sct = S. ¢. tergeminus (blue); Smm = S. m. miliarius (dark green); Sms = S. m. streckeri (orange); Smb = S.
m. barbouri (dark blue); Apc = A. piscivorus (black); Akc = A. contortrix (black). In (b), the tree relating subspecies is shown, with abbreviations as above,
except that the two outgroup species have been combined and denoted “Ag”. In both subfigures, numbers above the nodes refer to bootstrap support values,
and the trees depicted are majority-rule consensus trees over 100 bootstrap samples.

a general lack of resolution among the three subspecies within the S.
miliarius clade, which again is consistent with the results observed
here. While the results of the analysis using our new method are
consistent with those of previous methods, there were important
differences in the time required by the two methods. For example,
the *BEAST analysis in Kubatko et al. (2011) took approximately
10 days to run, and even after this extensive run time, there was
evidence that the effective population size parameter estimates had
not converged. In contrast, our method took less than 1 hour to get
the initial species tree estimate, and less than 1 day to analyze 100
bootstrap replicates in serial on a desktop linux machine; if the 100
bootstrap analyses were run in parallel, the total computing time
could be cut to less than 1 hour.

4.4 Application to Soybean Data

The results of the analysis of the soybean data using both SNAPP
and SVDquartets are shown in Figure 8. The SNAPP analysis was
run for 2.239 million iterations, corresponding to 28 days on a
desktop linux machine (2x Quad Core Xeon E5520 / 2.26GHz /
32GB). There were important indications of a lack of convergence
of the method, with nearly all effective sample size (ESS) values
below 200 and trace plots indicating issues in convergence. The full
details of the analysis and assessment of convergence are described
in the Supplemental Information. The SVDquartets method with
100 bootstrap samples and 20,000 quartets sampled per replicate
required approximately 600 hours (which corresponds to 25 days)
of time to complete using the same desktop linux machine, though
it was run in parallel using 6 processors and thus took only 4.5 days
to complete. We note that this can easily be parallelized further, with
the only limits due to availability of processors.

Even though we have subsampled and filtered the original data
set, our results are in agreement with the findings of the original
report (Lam et al., 2010). In their analyses they found that cultivated
soybeans formed a tight subclade. Furthermore, they concluded
using the Bayesian clustering program STRUCTURE and PCA
analysis that COl and C12 show a clear separation from the
cultivated cluster. Also, the phylogenetic tree in Lam et al. (2010)
has cultivars as a part of the clade that includes wild type soybeans
W08, W10, and W15, while W07, W12 and W14 are part of another
cluster. One can see that the results in Figure 8 for both trees are in
general consistent with the previous findings. Of course, there are
important differences between the trees, as well.

5 CONCLUSION

We have presented a method to reliably infer the valid split in a set
of four taxa. We have demonstrated that the method performs very
well over a range of simulation conditions. The method can be easily
extended for use in inferring species phylogenies in larger taxon
samples, as demonstrated by our applications to the rattlesnake
data and to the soybean data. The method thus makes a valuable
contribution to the collection of methods for inferring species-level
phylogenetic trees under the coalescent model for either multi-locus
or unlinked SNP data.
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