
PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 1

PartitionFinder v1.1.0
and

PartitionFinderProtein v1.1.0

Manual
Rob Lanfear, August 2011
Last updated May 2013

Icon © Ainsley Seago. Thanks Ainsley!

Questions, suggestions, problems, bugs? Search or post on the discussion group at:
http://groups.google.com/group/partitionfinder

	

Step-­‐by-­‐step	
 tutorial:	
 http://www.robertlanfear.com/partitionfinder/tutorial/	

News:	
 http://www.robertlanfear.com/partitionfinder/news/	

FAQs:	
 http://www.robertlanfear.com/partitionfinder/faq/	

Citations
If you use PartitionFinder or PartitionFinderProtein at all:
Lanfear R, Calcott B, Ho SYW, Guindon S (2012). PartitionFinder: combined selection
of partitioning schemes and substitution models for phylogenetic analyses. Molecular
Biology and Evolution 29 (6): 1695-1701. http://dx.doi.org/10.1093/molbev/mss020

If you use the RAxML version, or the ‘rcluster’ or ‘hcluster’ search options:
Lanfear, Calcott, Kainer, Mayer, and Statmatakis In prep. Selecting optimal partitioning
schemes for phylogenomic datasets: a comparison of clustering methods.

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 2

	

Disclaimer	
 3	

What	
 PartitionFinder	
 and	
 PartitionFinderProtein	
 are	
 for	
 3	

Operating	
 systems	
 (Mac,	
 Windows	
 and	
 Linux	
 work)	
 3	

QuickStart	
 –	
 simple	
 use	
 cases	
 4	

Overview	
 5	

Running	
 PartitionFinder	
 on	
 Macs	
 6	

Installing	
 Python	
 on	
 Macs	
 (most	
 Macs	
 already	
 have	
 it)	
 6	

Installing	
 PartitionFinder	
 on	
 Macs	
 6	

Running	
 PartitionFinder	
 and	
 PartitionFinderProtein	
 on	
 Macs	
 7	

Running	
 PartitionFinder	
 on	
 Windows	
 8	

Installing	
 Python	
 on	
 Windows	
 8	

Installing	
 PartitionFinder	
 on	
 Windows	
 8	

Running	
 PartitionFinder	
 and	
 PartitionFinderProtein	
 on	
 Windows	
 9	

Using	
 PartitionFinder	
 with	
 RAxML	
 (the	
 -­‐-­‐raxml	
 option).	
 10	

Why	
 bother?	
 10	

Advanced	
 tips	
 10	

Input	
 Files	
 11	

Alignment	
 File	
 in	
 phylip	
 format	
 11	

Configuration	
 File	
 12	

alignment 12
branchlengths 13
models 13
model_selection 15
[data_blocks] 15
[schemes] 16
search 16
user_tree_topology 17

Configuration	
 File	
 options	
 specific	
 to	
 using	
 the	
 -­‐-­‐raxml	
 option	
 18	

models 18

Output	
 files	
 19	

best_schemes.txt 19
subsets folder 19
schemes folder 19

Command	
 line	
 options	
 20	

--raxml 20
-p N, --processors N 20
--force-restart 20
--weights “Wrate, Wbase, Wmodel, Walpha” 20
--rcluster-percent N 20

Credits	
 22	

PhyML	
 22	

RAxML	
 22	

PyParsing	
 22	

Python	
 22	

Helpful	
 People	
 22	

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 3

Disclaimer
Copyright (C) 2011-2013 Robert Lanfear and Brett Calcott

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version. This program is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details. You should have
received a copy of the GNU General Public License along with this program. If not, see
<http://www.gnu.org/licenses/>. PartitionFinder also includes the PhyML program, the
RAxML program, and the PyParsing library all of which are protected by their own
licenses and conditions, using PartitionFinder implies that you agree with those
licences and conditions as well.

What PartitionFinder and PartitionFinderProtein are for
PartitionFinder and PartitionFinderProtein are programs for selecting best-fit partitioning
schemes and models of molecular evolution for nucleotide and amino acid alignments,
respectively. The user provides an alignment with some pre-defined data blocks (e.g. 9
data blocks defining the 1st, 2nd and 3rd codon positions of 3 protein-coding genes, see
Figure 1). The programs then find the best partitioning scheme for this dataset, at the
same time as selecting best-fit substitution models for each subset of sites. Here are a
few things you can do with the programs:

1. Find the best-fit partitioning scheme for a given nucleotide or amino acid
dataset

2. Compare any number of user-defined partitioning schemes
3. Find best-fit models of molecular evolution for each subset in any partitioned

dataset (much like you might do with ModelTest or ProtTest).

The idea is that finding best-fit partitioning schemes and models of molecular evolution
will improve any downstream analyses of your data, like estimating phylogenetic trees
or molecular dates. All of those kinds of analyses assume that your model of evolution
is correct, and PartitionFinder helps make the model as good as it can be.

PartitionFinder and PartitionFinderProtein come in a single download from
www.robertlanfear.com/partitionfinder, and are designed to take the hard work out of
comparing partitioning schemes, and to help find a scheme that maximises the fit of the
data to the model, without including more parameters than are necessary. Both
programs implement three information-theoretic measures for comparing models of
molecular evolution and partitioning schemes: the Akaike Information Criterion (AIC),
the corrected Akaike Information Criterion (AICc), and the Bayesian Information
Criterion (BIC). At the end of a run, you are given output files that tell you the best
partitioning scheme, along with the best-fit model of molecular evolution for each
subset (sometimes called a ‘partition’, but that term is a bit misleading) in that scheme.
So you can then move straight on to your phylogenetic analyses.

Operating systems (Mac, Windows and Linux work)
Mac OSX and Windows are supported. For Linux, details are provided in the FAQs on
the website: http://www.robertlanfear.com/partitionfinder/faq/

user
高亮

user
高亮

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 4

QuickStart – simple use cases

For a small multilocus dataset (e.g. ~10 loci) use a greedy search with PhyML:

1. Define data blocks by gene and codon position
2. In the .cfg file, set the following options:

branchlengths = linked;
models = all;
model_selection = bic;
search=greedy;

3. Run PartitionFinder from the commandline as follows:

python “<PartitionFinder.py>” “<InputFoldername>”

For a larger dataset (e.g. ~100 loci) use a greedy search with RAxML:

1. Define data blocks by gene and codon position
2. Set the .cfg file options as above.
3. Run PartitionFinder using RAxML, as follows:

python “<PartitionFinder.py>” “<InputFoldername>” --raxml

For a really big dataset (e.g. ~1000 loci) use clustering algorithms with RAxML:

1. Define data blocks by gene and codon position
2. Set the .cfg file options as above, except:

search=rcluster;

3. Run PartitionFinder using RAxML, as follows:

python “<PartitionFinder.py>” “<InputFoldername>” --raxml

This implements the relaxed clustering algorithm described in Lanfear et al
2013 (in prep: Lanfear, Calcott, Kainer, Mayer, and Statmatakis “Selecting
optimal partitioning schemes for phylogenomic datasets: a comparison of
clustering methods.”). The default is to check the top 10% of schemes, based
on those that are expected to give the biggest improvements. If that’s still too
slow on your huge dataset, reduce that to 1% or 0.1% of schemes like this:

python “<PartitionFinder.py>” “<InputFoldername>” –raxml --rcluster-percent 0.1

4. If the relaxed clustering algorithm is still too slow, use the strict hierarchical
clustering algorithm by setting this option in the .cfg file:

search=hcluster;

This implements the strict clustering algorithm described in Lanfear et al 2013
(in prep: Lanfear, Calcott, Kainer, Mayer, and Statmatakis “Selecting optimal
partitioning schemes for phylogenomic datasets: a comparison of clustering
methods.”).

user
高亮

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 5

Overview

Partitioning involves splitting sites in your alignment into sets that have evolved under
similar models. For example, if you have a 3 gene dataset you might suspect that each
of the three genes has been evolving differently – perhaps they come from different
chromosomes, or have experienced different evolutionary constraints. Furthermore, you
might think that each codon position within each gene has been evolving differently –
different codon positions tend to evolve at different rates, and experience different
substitutional processes thanks to the triplet structure of the genetic code. Because of
this, you might split your datfa into 9 sets of sites for this alignment – one for each
codon position in each gene. But is this too many different sets? Perhaps it would be
better to join together the 1st and 2nd codon sites of each gene, so defining 6 sets of sites.
Or perhaps it would be better to forget the divisions between genes, and define only 2
sets of sites – 1st and 2nd codon sites versus 3rd codon sites. The trouble is that if you start
with 9 possible sets of sites, there are a lot of different possible partitioning schemes you
might consider, 21147 in fact. This creates a problem – how do we find the best scheme
from that many schemes?

PartitionFinder solves this problem by quickly and efficiently comparing all of these
schemes. All you need to do is define your 9 possible sets of sites (i.e. the largest
number of sets of sites you think is sensible to define) as data blocks, and PartitionFinder
will do the rest. At the end of a run you are told which partitioining scheme is the best,
and also which model of molecular evolution you should use for each subset of sites in
that scheme (i.e., you don’t have to use ModelTest or ProtTest or similar programs on
your partitioned dataset, PartitionFinder does all of this model selection for you at the
same time as finding a partitioning scheme). You can then go straight on to performing
your phylogenetic analysis, without any additional model-testing or comparisons of
partitioning schemes.

If you don’t want to compare all possible schemes (which can be almost impossible for
large datasets), you can define exactly the schemes you do want to compare (see
search = user, below), or use a heuristic search algorithm to find a good scheme
(see search = greedy, search = rcluster, search = hcluster below).
You can also tell the PartitionFinder programs exactly which models of molecular
evolution to consider (see models, below). And you can define how they compare
partitioning schemes and models (see model_selection, below). PartitionFinder uses
a number of methods to speed up partitioning scheme comparison and model selection,
such as running on multiple processors when they’re available.

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 6

Running PartitionFinder on Macs

Installing Python on Macs (most Macs already have it)
If you have mac OSX Lion (i.e. OSX 10.7) or later, you already have Python 2.7
installed, so ignore the rest of this section. If you don’t have Lion, you need to make
sure you have Python 2.7 or later installed (but avoid installing Python 3.0 or above).
Installing Python is really easy, if you already know what version of OSX you have, just
go to this link and click the appropriate installer: http://www.python.org/getit/ .

If you don’t know what version of OSX you have, click the apple symbol at the top left
of your screen and then click ‘About This Mac’. A window will come up, and under the
picture of the apple is your version number (something like this: 10.6.6).

If you have version 10.6 or above, use this link to get Python 2.7:
http://www.python.org/ftp/python/2.7.2/python-2.7.2-macosx10.6.dmg

If you have anything before 10.6 (i.e. 10.5 or lower), use this link:
http://www.python.org/ftp/python/2.7.2/python-2.7.2-macosx10.3.dmg

Installing PartitionFinder on Macs

1. Download the latest version of PartitionFinder from
www.robertlanfear.com/partitionfinder, PartitionFinderProtein is included with
this download

2. Double-click the .zip file, and it will automatically unzip. You will get a folder
called something like ‘PartitionFinder1.0.0’ (depending on the version you
have.

3. Move it to wherever you want to store the PartitionFinder program

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 7

Running PartitionFinder and PartitionFinderProtein on Macs

These instructions describe how to run the ‘example/nucleotide’ analysis using
PartitionFinder. To run PartitionFinderProtein, just follow these instructions but replace
‘PartitionFinder’ with ‘PartitionFinderProtein’ in step 2, and ‘example/nucleotide’ with
‘example/aminoacid’.

1. Open Terminal (on most Macs, this is found in Applications/Utilities)
2. In the Terminal, you need to tell the computer where to find PartititionFinder, and

where to find your input files. The easiest way to do this is as follows:
a. Type “python“ followed by a space
b. Drag and drop the “PartitionFinder.py” file (which is in the PartitionFinder

folder you just unzipped) onto the command prompt. The path to
‘PartitionFinder.py’ will be added automatically.

c. Type another space
d. Drag and drop the blue ‘example/nucleotide’ folder (in the PartitionFinder

folder) onto the command prompt
3. Hit Enter/Return to run PartitionFinder

That’s it!

More generally, you run PartitionFinder by typing a command line that looks like this:

python “<PartitionFinder.py>” “<InputFoldername>”

Where <PartitionFinder.py> is the full path to the PartitionFinder.py (or
PartitionFinderProtein.py) file, and <InputFoldername> is the full path to your input
folder, which should contain an alignment and a .cfg file. Note that the input folder can
be anywhere on your computer, it doesn’t have to be in the PartitionFinder folder like
the example file.

Once PartitionFinder is running, it will keep you updated about its progress. If it hits a
problem, it will (hopefully) provide you with a useful error message that will help you
correct that problem. Hopefully, you won’t have too many problems and your terminal
screen will look something like that shown below.

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 8

Running PartitionFinder on Windows

Installing Python on Windows

The first thing you’ll need to do is install Python. This is simple and takes just a couple
of minutes. Download Python from here: http://www.python.org/getit/. Make sure you
download version 2.7. The instructions that follow assume you have installed python in
its default folder, which is c:\Python27.

Once python is installed you’ll need to update your “PATH”, so that your computer can
find it. To do this, follow these steps:

On Windows 7

1. Select “Computer” from the Start menu
2. Choose “System Properties” from the menu
3. Click “Advanced system settings” (it’s on the left) then click the “Advanced” tab
4. Click on “Environment Variables”, under “System Variables”, find “Path”, and

click on it.
5. Click “Edit…”, and add this text to the end of the Path in the box “Variable

value”. Note that there should be no spaces anywhere at all:
;C:\Python27

 then click “OK” and you’re done.

Windows XP

1. Click the “Start” menu, then “Control Panel” -> “System” -> “Advanced”
2. Click on “Environment Variables”, under “System Variables”, find “Path”, and

click on it.
3. Click “Edit…”, and add this text to the end of the Path. Note that there should

be no spaces anywhere at all:
;C:\Python27

then click “OK” and you’re done.

Windows Vista

1. Right click “My Computer” icon
2. Choose “Properties” from the menu
3. Click “Advanced” tab (it might also be called “Advanced system settings”)
4. Click “Edit…”, and add this text to the end of the Path. Note that there should

be no spaces anywhere at all:
;C:\Python27

 then click “OK” and you’re done.

Installing PartitionFinder on Windows

1. Download the latest version of PartitionFinder from
www.robertlanfear.com/partitionfinder, PartitionFinderProtein is included with
this download

2. Unzip the .zip file by right-clicking on the .zip file and choosing ‘Extract All’.
Inside the unzipped folder, find the folder called something like
‘PartitionFinder1.0.0’ (the numbers will depend on the version you have).

3. Move this folder to wherever you want to store the PartitionFinder program.

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 9

Running PartitionFinder and PartitionFinderProtein on Windows

These instructions describe how to run the ‘example/nucleotide’ analysis using
PartitionFinder. To run PartitionFinderProtein, just follow these instructions but replace
‘PartitionFinder’ with ‘PartitionFinderProtein’ in step 2, and ‘example/nucleotide’ with
‘example/aminoacid’.

1. Open a command prompt. To do this, click on the Start Menu, then navigate to the

command prompt like this: “All Programs” -> “Accessories” -> “Command Prompt”.
On Windows 7 you can just type “cmd” into the search box area, and you’ll see it.

2. In the command prompt, you need to tell the computer where to find
PartititionFinder, and where to find your input files. The easiest way to do this is as
follows:

a. Type “python“ followed by a space
b. Drag and drop the “PartitionFinder.py” file (which is in the

PartitionFinder folder you just unzipped) onto the command prompt. The
path to ‘PartitionFinder.py’ will be added automatically.

c. Type another space
d. Drag and drop the blue ‘example/nucleotide’ (in the PartitionFinder

folder) onto the command prompt
3. Hit Enter/Return to run PartitionFinder

That’s it!

More generally, you run PartitionFinder by typing a command line that looks like this:

python “<PartitionFinder.py>” “<InputFoldername>”

Where <PartitionFinder.py> is the full path to the PartitionFinder.py (or
PartitionFinderProtein.py) file, and <InputFoldername> is the full path to your input
folder, which should contain an alignment and a .cfg file. Note that the input folder can
be anywhere on your computer, it doesn’t have to be in the PartitionFinder folder like
the example file.

Once PartitionFinder is running, it will keep you updated about its progress. If it hits a
problem, it will (hopefully) provide you with a useful error message that will help you
correct that problem. Hopefully, you won’t have too many problems and your terminal
screen will look something like that shown below.

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 10

Using PartitionFinder with RAxML (the --raxml option).

Why bother?
By default, PartitionFinder uses PhyML to estimate likelihoods. As of version 1.1.0
PartitionFinder also includes the option to use RAxML. To do this, add '--raxml' to the
end of your command line, e.g.:

python “~/Applications/PartitionFinder.py” “~/Desktop/frogs” --raxml

There are three main considerations when choosing whether to use the RAxML option:

• RAxML is the only program that will work with very large datasets (e.g. 1000s
of genes, 1000s of taxa, or both).

• RAxML includes fewer models of molecular evolution than PhyML.
• Using the RAxML option allows you to use the very fast ‘clustering’ algorithms.

In general, if you need results fast or if you are working with very large datasets, then
you should use RAxML.

Advanced tips
1. Download and compile RAxML for your computer
We supply a windows and a mac version of RAxML with PartitionFinder, but for
various reasons these won’t be optimised for your computer. In fact, they might not
work at all on your computer. This is because RAxML is written so that it compiles
differently for different computers. PartitionFinder may run faster if you download and
compile the latest version of RAxML by following the instructions here:
https://github.com/stamatak/standard-RAxML

Once you have compiled RAxML, rename the executable ‘raxml’ or ‘raxml.exe’ if
you’re on windows, and put it in the ‘programs’ folder of PartitionFinder (replace the
existing file).

2. Use the clustering algorithms
When you’re using the --raxml option, you can use the clustering algorithms ‘rcluster’
and ‘hcluster’ (see below). These algorithm use default settings to find a good
partitioning scheme, but you can alter these settings to try and optimise partitionfinder
for your own dataset using the --weights and --rcluster-percent options (see below). As
a rule of thumb, it’s far better to run a single ‘rcluster’ search with a higher --rcluster-
percent than to spend time trying a lot of different weighting schemes with the ‘—
weights’ option (we have a paper in prep on this: Lanfear, Calcott, Kainer, Mayer, and
Statmatakis “Selecting optimal partitioning schemes for phylogenomic datasets: a
comparison of clustering methods.”).

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 11

Input Files
PartitionFinder and PartitionFinderProtein both need two input files, a Phylip alignment
and a configuration file. The best way to get a feel for how this works is to have a look
in the examples we’ve provided in the ‘example’ folder. There is also an online tutorial
at www.robertlanfear.com/partitionfinder/tutorial. You can copy and paste these folders
onto your desktop (or anywhere) and try running them by following the instructions
above. Playing around with the options in the .cfg files give you a good idea of what’s
possible.

In the rest of this section, we describe in detail exactly what the two input files should
look like, and what they do.

Alignment File in phylip format

The phylip format: Your alignment needs to be in Phylip format. We use the same
version of Phylip format that PhyML uses, which is described in detail here
http://www.atgc-montpellier.fr/phyml/usersguide.php?type=phylip. In brief, this format
should contain a line at the top with the number of sequences, followed by the number
of sites in the alignment. After that, there should be one sequence on each line, where a
sequence contains a name, followed by some whitespace (either spaces or tabs) and the
sequence. Names can be up to 100 characters long. There should be nothing else on
the line other than the name and the sequence – watch out if you use MacClade, which
adds some extra things to the end of each line.

Converting other formats to phylip: If you have an alignment in some other format and
want to convert it into phylip format, the best (free!) tool to use is Geneious. Other
alignment editors tend to cut the names short in phylip files (the original definition had
a 10 character limit on names), but Geneious doesn’t. If you don't have Geneious, it's
free and you can download it from http://www.geneious.com/. Once you have
Geneious, follow these steps to convert your alignment file to phylip:

1. Open up your alignment file in Geneious, and highlight it
2. Go the 'File' menu and click 'Export', then 'Selected documents...'
3. Scroll down the list of options and choose 'Phylip (*.phy)', and click 'OK'.
4. Now a box of options will come up, choose 'Export full length'.
5. Save the phylip alignment file in the same folder as your .cfg file for

PartitionFinder.

One more thing: Often, you’ll have sites in your alignment that you don’t intend to use
in your final analysis, or perhaps you have an alignment of mixed data types like DNA,
protein, and morphological data. In PartitionFinder and PartitionFinder protein, this is
OK. You don’t need to make separate alignments of each datatype. You can just ignore
the sites you’re not interested in by setting the ‘[data_blocks]’ option appropriately,
more instructions below.

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 12

Configuration File
PartitionFinder programs get all of their information on the analysis you want to do from
a configuration file. This file should always be called “partition_finder.cfg”, regardless of
whether you’re using PartitionFInder or PartitionFinderProtein. The best thing to do is to
base your own .cfg on the example file provided in the “example” folder. An exhaustive
list of everything in that file follows. Note that all lines in the .cfg file except comments
and lines with square brackets have to end with semi-colons.

In the configuration file, white spaces, blank lines and lines beginning with a “#”
(comments) don’t matter. You can add or remove these as you wish. All the other lines
do matter, and they must all stay in the file in the order they are in below. There is one
exception – the user_tree_topology option (see below).

The basic configuration file looks like this:

ALIGNMENT FILE #
alignment = test.phy;

BRANCHLENGTHS #
branchlengths = linked;

MODELS OF EVOLUTION #
models = all;
model_selection = bic;

DATA BLOCKS #
[data_blocks]
Gene1_pos1 = 1-789\3;
Gene1_pos2 = 2-789\3;
Gene1_pos3 = 3-789\3;

SCHEMES #
[schemes]
search = user;

user schemes
allsame = (Gene1_pos1, Gene1_pos2, Gene1_pos3);
1_2_3 = (Gene1_pos1) (Gene1_pos2) (Gene1_pos3);
12_3 = (Gene1_pos1, Gene1_pos2) (Gene1_pos3);

The options in the file are described below. Where an option has a limited set of
possible commands, they are listed on the same line as the option, separated by vertical
bars like this “|”. Most of these options don’t differ between PartitionFinder and
PartitionFinderProtein, the only one that does is the ‘models’ option. The options have
slightly different meanings depending on whether you’re using the default version of
PartitionFinder (which is based on PhyML) or the RAxML version (which, perhaps
obviously, is based on RAxML). Options that differ in the RAxML version are explained
at the end of this section.

alignment
The name of your sequence alignment. This file should be in the same folder as the .cfg
file.

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 13

branchlengths: linked | unlinked
This sets how to branch lengths of will be estimated. How you set this will depend to
some extent on which program you intend to use for you final phylogenetic analysis.
Almost all phylogeny programs support linked branchlengths, but only some support
unlinked branchlenghts (e.g. MrBayes, BEAST, and RaxML).

branchlengths = linked; only one underlying set of branch lengths is estimated.
Each subset has its own scaling parameter (i.e. its own subset-specific rate). This allows
subsets to evolve at different rates, but doesn’t change the length of any one branch
relative to any other. The total number of branch length parameters here is quite small.
If there are N species in your dataset, then there are 2N-3 branch lengths in your tree,
and each subset after the first one adds an extra scaling parameter. For instance, if you
had a scheme with 10 subsets and a dataset with 50 species, you would have 106
branch length parameters.

branchlengths = unlinked; each subset has its own independent set of branch
lengths. In this case, branch lengths are estimated independently for each subset, so
each subset has it’s own set of 2N-3 branch length parameters. With this setting, the
number of branch length parameters can be quite large (2NS – 3S). So, a scheme with
10 subsets and a dataset with 50 species would have 970 branch length parameters. (

models (PartitionFinder): all | raxml | mrbayes | beast | <list>
models (PartitionFinderProtein): all_protein | <list>

Sets which models of molecular evolution to consider during model selection.
PartitionFinder analyses nucleotide sequences, so uses only nucleotide models of
evolution, like the GTR and HKY models. PartitionFindeProtein analyses amino acid
sequences, so uses only amino acid models, like the WAG and LG models.

PartitionFinder and PartitionFinderProtein perform model selection on each subset in
much the same way as other programs like jModelTest, ProtTest, MrModelTest, or
ModelGenerator. Your results therefore tell you not only the best partitioning scheme,
but also which model of molecular evolution is most appropriate for each subset in that
scheme. This means that you don’t need to do any further model selection after
PartitionFinder is done.

models = all; in PartitionFinder, compare 56 models of nucleotide evolution for
each subset. These 56 models comprise the 12 most commonly used models of
molecular evolution (JC, K80, TrNef, K81, TVMef, TIMef, SYM, F81, HKY, TrN, K81uf,
TVM, TIM, and GTR), each of which comes in four flavours: on its own, with invariant
sites (+I), with gamma distributed rates across sites (+G), or with both gamma distributed
rates and invariant sites (+I+G).

models = all_protein; in PartitionFinderProtein, compare 112 models of amino
acid evolution for each subset. These 112 models comprise the 14 most commonly
used models of protein evolution (LG, WAG, mtREV, Dayhoff, DCMut, JTT, VT,
Blosum62, CpREV, RtREV, MtMam, MtArt, HIVb, HIVw), each of which comes in eight
flavours: on its own, with invariant sites (+I), with gamma distributed rates across sites
(+G), with amino acid frequencies estimated from the data (+F), and with combinations
of two or more of these options (+I+G, +G+F, +I+F, +I+G+F).

user
高亮

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 14

models = raxml; models = mrbayes; models = beast; tells
PartitionFinder to use only the nucleotide models available in RaxML, MrBayes3.1.2, or
BEAST 5.7.2 (and earlier versions) respectively. This can be particularly useful if you
intend to use one of these programs for your phylogenetic analysis, as it restricts the
models that are compared to only those that are implemented in the particular
programs. This is not only the most appropriate thing to do, but also saves a lot of
computational time.

models = <list>; This can be any list of models appropriate for the data type. In
PartitionFinder this is anything from the Nucleotide Models list (below). In
PartitionFinderProtein it is anything from the Amino Acids model list. Each model in the
list should be separated by a comma. For example, if I was only interested in a few
nucleotide models in PartitionFinder, I might do this:

models = JC, JC+G, HKY, HKY+G, GTR, GTR+G;

Or, for protein models in PartitionFinderProtein I might do this:

models = LG, LG+G, LG+G+F, WAG, WAG+G, WAG+G+F;

Note that in this list you can specify either nucleotide models, or amino acid models,
but not a mixture of both. If you have a mixed dataset (i.e. some data blocks are amino
acid, some are nucleotides, you have to run PartitionFinder on the nucleotide data, then
PartitionFinder protein on the amino acid data.

Here are lists of all of the models implemented in PartitionFinder and
PartitionFinderProtein. It’s easy for us to implement new models, so if you’d like us to
do so, please get in touch either by emailing Rob Lanfear, or by posting on the
PartitionFinder google group.

Nucelotide	
 Models	
 in	
 PartitionFinder	
 (56	
 in	
 total)	

+I: include a proportion of invariant sites
+G: include gamma distributed rates across sites (with 4 categories)
JC, K80, TrNef, K81, TVMef, TIMef, SYM, F81, HKY, TrN, K81uf, TVM, TIM, GTR, JC+I,
K80+I, TrNef+I, K81+I, TVMef+I, TIMef+I, SYM+I, F81+I, HKY+I, TrN+I, K81uf+I,
TVM+I, TIM+I, GTR+I, JC+G, K80+G, TrNef+G, K81+G, TVMef+G, TIMef+G, SYM+G,
F81+G, HKY+G, TrN+G, K81uf+G, TVM+G, TIM+G, GTR+G, JC+I+G, K80+I+G,
TrNef+I+G, K81+I+G, TVMef+I+G, TIMef+I+G, SYM+I+G, F81+I+G, HKY+I+G,
TrN+I+G, K81uf+I+G, TVM+I+G, TIM+I+G, GTR+I+G

Amino	
 Acid	
 Models	
 in	
 PartitionFinderProtein	
 (112	
 in	
 total)	

+I: include a proportion of invariant sites
+G: include gamma distributed rates across sites (with 4 categories)
+F: include amino acid frequencies estimated from the alignment
LG, WAG, mtREV, Dayhoff, DCMut, JTT, VT, Blosum62, CpREV, RtREV, MtMam,
MtArt, HIVb, HIVw, LG+F, WAG+F, mtREV+F, Dayhoff+F, DCMut+F, JTT+F, VT+F,
Blosum62+F, CpREV+F, RtREV+F, MtMam+F, MtArt+F, HIVb+F, HIVw+F, LG+I,
WAG+I, mtREV+I, Dayhoff+I, DCMut+I, JTT+I, VT+I, Blosum62+I, CpREV+I, RtREV+I,
MtMam+I, MtArt+I, HIVb+I, HIVw+I, LG+G, WAG+G, mtREV+G, Dayhoff+G,
DCMut+G, JTT+G, VT+G, Blosum62+G, CpREV+G, RtREV+G, MtMam+G, MtArt+G,
HIVb+G, HIVw+G, LG+I+G, WAG+I+G, mtREV+I+G, Dayhoff+I+G, DCMut+I+G,
JTT+I+G, VT+I+G, Blosum62+I+G, CpREV+I+G, RtREV+I+G, MtMam+I+G, MtArt+I+G,
HIVb+I+G, HIVw+I+G, LG+I+F, WAG+I+F, mtREV+I+F, Dayhoff+I+F, DCMut+I+F,

user
高亮

user
高亮

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 15

JTT+I+F, VT+I+F, Blosum62+I+F, CpREV+I+F, RtREV+I+F, MtMam+I+F, MtArt+I+F,
HIVb+I+F, HIVw+I+F, LG+G+F, WAG+G+F, mtREV+G+F, Dayhoff+G+F,
DCMut+G+F, JTT+G+F, VT+G+F, Blosum62+G+F, CpREV+G+F, RtREV+G+F,
MtMam+G+F, MtArt+G+F, HIVb+G+F, HIVw+G+F, LG+I+G+F, WAG+I+G+F,
mtREV+I+G+F, Dayhoff+I+G+F, DCMut+I+G+F, JTT+I+G+F, VT+I+G+F,
Blosum62+I+G+F, CpREV+I+G+F, RtREV+I+G+F, MtMam+I+G+F, MtArt+I+G+F,
HIVb+I+G+F, HIVw+I+G+F

model_selection: AIC | AICc | BIC
Sets which metric to use for model selection. It also defines the metric for comparing
partitioning schemes if you use search=greedy (see below).

The AIC, AICc, and BIC are similar in spirit – they all reward models that fit the data
better, but penalise models that have more parameters. The idea is include parameters
that help the model fit the data more than some specified amount, but to avoid
including too many parameters (overparameterisation). The BIC penalises extra
parameters the most, followed by the AICc, and then the AIC. Which model_selection
approach you use will depend on your preference. There are lots of papers comparing
the merits of the different metrics, and based on those papers my own preference is to
use the BIC (see especially Minin et al Syst. Biol. 52(5):674–683, 2003; and Adbo et al
Mol. Biol. Evol. 22(3):691–703. 2004).

[data_blocks]
On the lines following this statement you define the starting subsets for your analysis
(we call these data blocks). Each data block has a name, followed by an “=” and then a
description. The description is built up as in most Nexus formats, and tells
PartitionFinder which sites of your original alignment correspond to each data block.
The best way to understand this it to look at a couple of examples.

Imagine a DNA sequence alignment with 1000bp of protein-coding DNA, followed by
1000bp of intron DNA. Let’s imagine that some of the intron was unalignable too, so
we don’t want that included in our analysis, but we don’t want to cut it out of our
alignment file. Your data block definitions might look like this:

 Gene1_codon1 = 1-1000\3; �
 Gene1_codon2 = 2-1000\3; �

Gene1_codon3 = 3-1000\3; �
intron = 1001-1256 1675-2000; �

�-� are typical of how you might separate out codon positions for a protein coding
gene. The numbers either side of the dash define the first and last sites in the data block,
and the number after the backslash defines the spacing of the sites. Every third site will
define a codon position, as long as your alignment stays in the same reading frame
throughout that gene.

� shows how you can include ranges of sites without backslashes, and demonstrates
that you can combine more than one range of sites in a single data block. Here, we
excluded sites 1257-1674 because they were unalignable.

The total list of data blocks does not have to include all the sites in your original
alignment. For instance, you might exclude some sites you’re not interested in, or that
were unalignable. You’ll get a warning from PartitionFinder if all of the sites in the

user
高亮

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 16

original alignment are not included in the data blocks you’ve defined. Also, note that
data blocks cannot be overlapping. That is, each site in the original alignment can only
be included in a single data block.

To help with cutting and pasting from Nexus files (like those used by MrBayes) you can
leave “charset” at the beginning of each line. So, the following would be treated exactly
the same as the example above:

 charset Gene1_codon1 = 1-1000\3;
 charset Gene1_codon2 = 2-1000\3;

charset Gene1_codon3 = 3-1000\3;
charset intron = 1001-1256 1675-2000;

[schemes]
On the lines following this statement, you define how you want to look for good
partitioning schemes, and any user schemes you want to define. You only need to
define user schemes if you choose search=user.

search: all | greedy | rcluster | hcluster | user
This option defines which partitioning schemes PartitionFinder will analyse, and how
thorough the search will be. In general ‘all’ is only practical for analyses that start with
12 or fewer data blocks defined (see below). In general, the algorithms earlier in this list
give better answers, but require longer to run. So, use the earliest algorithm in the list
that is practical for your data (roughly, ‘all’ for very small datasets, ‘greedy’ for datasets
of ~10 loci, ‘clustering’ for datasets of 100’s of loci).

 search = all Tells PartitionFinder to analyse all possible partitioning schemes. That

is, every scheme that includes all of your data blocks in any combination at all.
Whether you can analyse all schemes will depend on how much time you have, and on
what is computationally possible. If you have any more than 12 data blocks to start
with you should not choose ‘all’. This is because the number of possible schemes can
be extremely large. For instance, with 13 data blocks there are almost 28 million
possible schemes, and for 16 data blocks the number of possible schemes is over 10
billion. It’s just not possible to analyse that many schemes exhaustively. For 12 data
blocks, the number of possible schemes is about 4 million, so it might be possible to
analyse all schemes if you have time to wait, and a fast computer with lots of
processors.

search = greedy Tells PartitionFinder to use a greedy algorithm to search for a
good partitioning scheme. This is a lot quicker than using search=all, and will often give
you the same answer. However, it is not 100% guaranteed to give you the best
partitioning scheme. The algorithm is described in the PartitionFinder paper (see
Citation, below). When you use search=greedy, PartitionFinder has to compare
partitioning schemes using an information-theoretic metric (AIC, AICc, or BIC). Which
metric it uses is defined using the model_selection option (see above).

search = rcluster Tells PartitionFinder to use a relaxed hierarchical clustering
algorithm to search for a good partitioning scheme. This option only works with the
--raxml commandline option (see above). It works by measuring the similarity of
different subsets, then looking at schemes that combine the most similar subsets. It
usually performs worse than the greedy search option, and better than the hcluster
option. You can control this algorithm using the --rcluster-percent and --weights

user
高亮

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 17

command line options (see below). The rcluster algorithm is a very efficient way to
search, and can be used even on large phylogenomic datasets with 1000’s of loci. It’s
designed for use with datasets that are too large to analyse with the greedy algorithm.

search = hcluster Tells PartitionFinder to use a strict hierarchical clustering
algorithm to search for a good partitioning scheme. This option only works with the
--raxml commandline option. This algorithm is the fastest, but usually the worst
performing, of all the search algorithms. If your dataset is huge, and it’s just not possible
to use any of the other algorithms, this one will still do a reasonable job, usually much
much better than trying to choose a partitioning scheme by hand. You can control this
algorithm using the --weights command line options (see below).

search = user Use this option to compare partitioning schemes that you define by
hand. User-defined schemes are listed, one-per-line, on the lines following
“search=user”. A scheme is defined by a name, followed by an “=” and then a
definition. To define a scheme, simply use parentheses to join together data blocks that
you would like to combine. Within parentheses, each data block is separated by a
comma. Between parentheses, there is no comma. All user schemes must contain all of
the data blocks defined in [data_blocks].

Here’s an example. If I’m working on my one protein-coding gene plus intron alignment
above, I might want to try the following schemes: (i) all data blocks analysed together;
(ii) intron analysed separately from protein coding gene; (iii) intron separate, 1st and 2nd
codon positions analysed separately from 3rd codon positions; (iv) all data blocks
analysed separately. I could do this as follows, with one scheme on each line:

 together = (Gene1_codon1, Gene1_codon2, Gene1_codon3, intron);

intron_123 = (Gene1_codon1, Gene1_codon2, Gene1_codon3) (intron);
 intron_12_3 = (Gene1_codon1, Gene1_codon2) (Gene1_codon3) (intron);
 separate = (Gene1_codon1) (Gene1_codon2) (Gene1_codon3) (intron);

user_tree_topology
This is an additional option which can be added into the .cfg file after the ‘alignment’
line. It’s used if you’d like to supply PartitionFinder with a fixed topology, rather than
relying on the neighbour joining topology that the program estimates by default. This
might be useful if you know ahead of time what the true tree is, for instance when
doing simulations. To use the option, just add in an extra line to the .cfg file like this:

ALIGNMENT FILE #
alignment = test.phy;
user_tree_topology = tree.phy;

Where “tree.phy” is the name of the file containing a newick formatted tree topology
(with or without branch lengths). The file name can be anything – it doesn’t have to be
‘tree.phy’. The tree file must be in the same folder as the alignment and the .cfg file.
When you use this option, the topology you supply in the tree file will be fixed
throughout the analysis. Branch lengths will be re-estimated using a GTR+I+G model on
the whole dataset, as in a standard analysis.

If you don’t want to use this option, you can just leave out the user_tree_topology line
from the .cfg file.

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 18

Configuration File options specific to using the --raxml option
When using the --raxml option, the configuration file is exactly the same, but the
models that are available differ.

models (PartitionFinder): all | <list>
 mod(PartitionFinderProtein): all_protein | all_protein_gamma
 | all_protein_gammaI | <list>

The details of how these options work is the same as above, but because RAxML has
different models available, setting ‘models=all’ when using the --raxml option will imply
different lists of models.

models = all; Both available models in RAxML are used, GTR+G and GTR+I+G

models = all_protein; all 44 available models of protein substitution in RAxML
are used (see list below). NB RAxML does not include any models without gamma
distributed rates across sites. This is probably not a bad thing!

models = all_protein_gamma; models = all_protein_gammaI; use only
models that have +G but not +I from the list below; or use only models that have both
+G and +I from the list below. These lists are included in case you are intending to run
your final analyses in RAxML (i.e. estimate your tree). In RAxML you cannot have a
model with +G in one partition, and another with +I+G in another partition (although
you can in PartitionFinder, even using the --raxml option, because we process the data
very differently). So, these options might help here.

models = <list>; Details are the same as above, but the available model lists are
different when using the --raxml option. Here they are:

Nucelotide	
 Models	
 in	
 PartitionFinder	
 when	
 using	
 -­‐-­‐raxml	
 (2	
 in	
 total)	

GTR+G, GTR+I+G

Amino	
 Acid	
 Models	
 in	
 PartitionFinderProtein	
 when	
 using	
 -­‐-­‐raxml	
 (44	
 in	
 total)	

BLOSUM62+G, CPREV+G, DAYHOFF+G, DCMUT+G, JTT+G, LG+G, MTMAM+G,
MTREV+G, RTREV+G, VT+G, WAG+G, BLOSUM62+G+F, CPREV+G+F,
DAYHOFF+G+F, DCMUT+G+F, JTT+G+F, LG+G+F, MTMAM+G+F, MTREV+G+F,
RTREV+G+F, VT+G+F, WAG+G+F, BLOSUM62+I+G, CPREV+I+G, DAYHOFF+I+G,
DCMUT+I+G, JTT+I+G, LG+I+G, MTMAM+I+G, MTREV+I+G, RTREV+I+G, VT+I+G,
WAG+I+G, BLOSUM62+I+G+F, CPREV+I+G+F, DAYHOFF+I+G+F, DCMUT+I+G+F,
JTT+I+G+F, LG+I+G+F, MTMAM+I+G+F, MTREV+I+G+F, RTREV+I+G+F, VT+I+G+F,
WAG+I+G+F

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 19

Output files

All of the output is contained in a folder called “analysis” which appears in the same
file as your alignment. There is a lot of output, but in general you are likely to be
interested in four things, maybe this order:

best_schemes.txt	
 	

has information on the best partitioning scheme found. This includes a detailed
description of the scheme, as well as the model of molecular evolution that was
selected for each subset in the scheme. It also contains a description of the each scheme
in RAxML format (for use with the –q option in RAxML).

subsets	
 folder	

is a folder which contains detailed information on the model selection performed on
each subset. This output is very similar to what you would get from any model-selection
program. Each model tested is listed, in order of increasing BIC score (i.e. best model is
at the top). This folder also contains alignments for each subset, and a .bin file which
allows PartitionFinder to re-load information from previous analyses.

schemes	
 folder	

is a folder which contains detailed information on the schemes that were analysed, each
in a separate .txt file. For the greedy and clustering algorithms, this folder contains only
the starting scheme and the best scheme that was found at each step of the algorithm.

user
高亮

user
高亮

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 20

Command line options
There are a number of additional commands you can pass to PartitionFinder from the
comandline. These can be used to fine-tune your analyses.

--raxml
This tells PartitionFinder and PartitionFinderProtein to use RAxML rather than PhyML
(the default). For reasons why you might do this, read the section “Using PartitionFinder
with RAxML”, above. Because of the nature of RAxML, we can’t guarantee that the
RAxML executables we have provided in the ‘programs’ folder will work on all
Windows and Mac machines. So if you use this option and RAxML doesn’t work, you’ll
need to download and compile RAxML yourself, on your own computer. Instructions
on how to do that are here: https://github.com/stamatak/standard-RAxML

-p N, --processors N
Default – use all available processors.
N is the number of processors you want PartitionFinder to use. This controls the
number independent PhyML or RAxML runs that PartitionFinder will run at any one
time. The default is for PartitionFinder to use all of the available processors (look for
this message at the start of the run, to see how many it found: “You appear to have N
cpus”). However, if you don’t want it to use all the processors, control with this option.
E.g. –p 5 would tell PartitionFinder to use up to 5 processors at once.

--force-restart
This will delete all previous workings (by deleting the ‘analysis’ folder) before restarting
a run. The default is not to do this, so PartitionFinder can use results that it has already
calculated.

--weights “Wrate, Wbase, Wmodel, Walpha”
Default: --weights “1, 0, 0, 0”
A list of weights to use in the clustering algorithms (NB, this only works in combination
with the --raxml option and either the hcluster or rcluster search options). This list
allows you to assign different weights to the overall rate for a subset, the base/amino
acid frequencies, the model parameters, and the alpha parameter (which describes
gamma distributed rates across sites). This will affect how subsets are clustered
together. For instance:

--weights '1, 1, 1, 0.1'
would weight the subset rate, base frequencies, and the model parameters equally, but
the alpha parameter as 10x less important. You can play around with these parameters
to try and find the best scheme that you can.

--rcluster-percent N
Default: --rcluster-percent 10
This option controls the thoroughness of the relaxed clustering algorithm. By default,
this algorithm will, at each iteration, search through the 10% of partitioning schemes
that lump together the most similar subsets (where similarity is determined by --weights
above). You can make it more thorough by increasing this percentage, or faster and less
thorough by decreasing it. In general, if you have a huge dataset you’re better off using
the rcluster algorithm with a very low percentage (e.g. --rcluster-percent 0.1) than using

user
高亮

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 21

the hcluster algorithm (we have a paper in prep on this: Lanfear, Calcott, Kainer,
Mayer, and Statmatakis “Selecting optimal partitioning schemes for phylogenomic
datasets: a comparison of clustering methods.”)

PartitionFinder  combined selection of partitioning schemes and substitution models for DNA and protein alignments 22

Credits
PartitionFinder relies heavily on the following things.

PhyML
PhyML does most of the sums performed by PartitionFinder. PhyML is described in this
paper: New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies:
Assessing the Performance of PhyML 3.0. Guindon S., Dufayard J.F., Lefort V.,
Anisimova M., Hordijk W., Gascuel O. Systematic Biology, 59(3):307-21, 2010.

RAxML
RAxML allows PartitionFinder to work with large datasets. It is a fantastically fast and
efficient piece of software developed by Alexis Stamatakis, the latest version is
described here: A. Stamatakis, RAxML-VI-HPC: maximum likelihood-based
phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics 22,
2688–2690 (2006).

PyParsing
PyParsing is a great Python module that we use for parsing input files.
http://pyparsing.wikispaces.com/

Python
PartitionFinder is written in Python. http://www.python.org/

Helpful People
A few people helped a lot in testing PartitionFinder and making helpful suggestions. In
alphabetical order, these wonderful people are: Matt Brandley, Renee Catullo, Karen
Meusemann, Bernhard Misof, Ainsley Seago, and Jessica Thomas. Thanks.

