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ABSTRACT

Motivation: Increasing attention has been devoted to estimation of

species-level phylogenetic relationships under the coalescent model.

However, existing methods either use summary statistics (gene trees)

to carry out estimation, ignoring an important source of variability in

the estimates, or involve computationally-intensive Bayesian Markov

chain Monte Carlo algorithms that don’t scale well to whole-genome

data sets.

Results: We develop a method to infer relationships among quartets

of taxa under the coalescent model using techniques from algebraic

statistics. Uncertainty in the estimated relationships is quantified

using the nonparametric bootstrap. The performance of our method

is assessed with simulated data. We then describe how our method

could be used for species tree inference in larger taxon samples, and

demonstrate its utility using data sets for Sistrurus rattlesnakes and

for soybeans.

Availability and Implementation: The method to infer the

phylogenetic relationship among quartets is implemented in the

software SVDquartets, available at

www.stat.osu.edu/∼lkubatko/software/SVDquartets.

Contact: Laura Kubatko, lkubatko@stat.osu.edu

1 INTRODUCTION

With recent advances in DNA sequencing technology, it is now

common to have available alignments from multiple genes for

inference of an overall species-level phylogeny. While this species

tree is generally the object that we seek to estimate, it is widely

known that each individual gene has its own phylogeny, called

a gene tree, which may not agree with the species tree. Many

possible causes of this gene incongruence are known, including

horizontal gene transfer, gene duplication and loss, hybridization,

and incomplete lineage sorting (ILS) (Maddison, 1997). Of these,

the best studied is incomplete lineage sorting, which is commonly

modeled by the coalescent process (Kingman, 1982a,b; Liu et al.,

2009a). Much recent effort has been devoted to the development

of methods to estimate species-level phylogenies from multi-locus

data under the coalescent model (Liu and Pearl, 2007; Liu et al.,

∗to whom correspondence should be addressed

2009b; Kubatko et al., 2009; Heled and Drummond, 2010; Than

and Nakhleh, 2009; Bryant et al., 2012).

Here we consider this basic problem, although our approach to

the problem differs from previous approaches in several important

ways. Previous approaches can be divided into two groups (Liu

et al., 2009a): summary-statistics approaches and sequence-based

approaches. Summary-statistics approaches first estimate a gene

tree independently for each gene, and then treat the estimated gene

trees as data for a second stage of analysis to estimate the species

tree. The most popular approaches in this category are Maximum

Tree (Liu et al., 2009b) (also implemented in the program STEM

(Kubatko et al., 2009)), STAR (Liu et al., 2009c), STEAC (Liu

et al., 2009c), MP-EST (Liu et al., 2010), and Minimize Deep

Coalescences (MDC; as implemented in the program PhyloNet

(Than and Nakhleh, 2009)). These methods are computationally

efficient for large data sets, but generally ignore variability in the

estimated gene trees and thus potentially lose accuracy. The second

group of methods uses the full data for estimation of the species tree

via a Bayesian framework for inference. The three most common

methods in this group, BEST (Liu and Pearl, 2007), *BEAST

(Heled and Drummond, 2010), and SNAPP (Bryant et al., 2012), all

seek to estimate the posterior distribution for the species tree using

Markov chain Monte Carlo (MCMC), but differ in some details of

the implementation. These methods become time-consuming when

the number of loci is large, and assessment of convergence of the

MCMC can be difficult.

Our proposed method is distinct from both classes of existing

approaches in that it uses the full data directly, but does not utilize

a Bayesian framework. It is thus computationally efficient while

incorporating all sources of variability (both mutational variance

and coalescent variance (cf. Huang et al. (2010))) in the estimation

process. The theory underlying our method applies to unlinked

Single Nucleotide Polymorphism (SNP) data, for which each site

is assumed to have its own genealogy drawn from the coalescent

model; however, we use simulation to show that the method

also performs well for multi-locus sequence data. To describe our

proposed method, we first begin with a brief overview of the

coalescent model in the context of species-level phylogenetics. We

use simulation to assess the performance of the method for both

simulated and empirical data. We conclude with a short discussion

of how the proposed method can be scaled up to larger taxon sets
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Quartet Inference from SNPs

We want to infer which of the three possible splits on quartets

is the true split. One way to assess this would be to consider the

FlatL1|L2
(P̂ ) matrix for each of the three possible splits, and

measure which of the three is closest to a rank 10 matrix. To do

this, we need a method to measure distances between matrices. Our

choice of a distance, described below, is modeled after the approach

of Eriksson (2005), who considered the problem of tree estimation

from a flattening matrix obtained from the probability distribution

of site patterns at the tips of a gene tree. His overall approach to

estimation of the phylogeny differed from ours, however, in that

he used splits of varying sizes (rather than just splits of quartets of

taxa) to develop a clustering algorithm to obtain the phylogenetic

estimate. We provide the details of our approach below.

Let aij be the (i, j)th entry of an m×n matrix A. The Frobenius

norm of a matrix A is

∥A∥F =

√

√

√

√

m
∑

i=1

n
∑

j=1

a2
ij .

An important property of the Frobenius norm is its characterization

using the singular values of A, that is

∥A∥F =

√

√

√

√

p
∑

i=1

σ2
i ,

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 are the singular values of A and

p = min{m,n}.

The well-known low-rank approximation theorem (Eckart-Young

theorem), implies that the distance from a matrix A to the nearest

rank k matrix in the Frobenius norm is

min
rank(B)=k

∥A−B∥F =

√

√

√

√

p
∑

i=k+1

σ2
i .

See Section 2.4 in Golub and Van Loan (2013) for more information

about singular value decomposition.

We apply this well-known result to our species tree estimation

problem by defining the SVD score for a split L1|L2 to be

SVD(L1|L2) :=

√

√

√

√

16
∑

i=11

σ̂2
i , (2)

where σ̂i are the singular values of FlatL1|L2
(P̂ ), for i ∈

{11, . . . , 16}. Our proposal for inferring the true species-level

relationship within a sample of four taxa is thus the following. For

each of the three possible splits, construct the matrix FlatL1|L2
(P̂ )

and compute SVD(L1|L2). The split with the smallest score is taken

to be the true split.

To quantify uncertainty in the inferred split, we implement

a nonparametric bootstrap procedure as follows. For a data set

consisting of M aligned sites, we re-sampled the columns of

the data matrix with replacement M times to generate a new

bootstrapped data matrix, and the SVD scores of the three splits

are computed for this bootstrapped data matrix. This procedure

is repeated B times, and the proportion of bootstrapped data sets

that support each of the three possible splits provides a measure of

support for that split.

2.2 Simulation Study

We first use simulated data to assess the ability of SVD(L1|L2)
to correctly identify the valid split under a variety of conditions.

Before describing the simulation procedure, we first point out that

while much of the currently available methodology for inferring

species trees assumes that multi-locus data (e.g., aligned DNA

sequences from many independent loci) are available for inference,

our method is actually designed for unlinked sites, for example,

for a sample of unlinked SNPs. This is because in computing the

probability distribution of site patterns at the tips of the species tree,

we integrate over the probability distribution of gene trees under

the coalescent model, with the implicit assumption that sequence

data evolve along these gene trees. Thus each site pattern is viewed

as an independent draw from the distribution f(X1 = i,X2 =
j,X3 = k,X4 = l|S) =

∫

G
f(X1 = i,X2 = j,X3 =

k,X4 = l|G)f(G|S)dG, where S represents the species tree

(topology and speciation times) and G represents a gene tree (both

topology and divergence times). True multi-locus data, however,

consist of an aligned portion of the DNA that is believed to share

a single underlying gene tree, and thus all sequence data within a

locus are believed to have evolved from a common gene genealogy.

We wish to examine the performance of our method for both

unlinked SNP data and for multi-locus data, and we thus consider

simulated data of two types: unlinked SNP data (e.g., each site

has its own underlying gene tree) and multi-locus data (a sequence

of length l is simulated from a shared underlying gene tree). Our

simulation consists of the following steps:

1. Generate a sample of g gene trees from the model species tree

((1:x,2:x):x,(3:x,4:x):x), where x is the length of each branch,

under the coalescent model using the program COAL (Degnan

and Salter, 2005).

2. Generate sequence data of length n on each gene tree under

a specified substitution model using the program Seq-Gen

(Rambaut and Grassly, 1997).

3. Construct the flattening matrix for each of the three possible

splits, and compute SVD(L1|L2) for each.

4. Repeat the above procedure (Steps 1 – 3) 1, 000 times and

record SVD(L1|L2)k, k = 1, 2, . . . , 1, 000, for each split. For

each of the 1, 000 data sets, generate B bootstrapped data

sets and record SVD(L1|L2)k,b, k = 1, 2, . . . , 1, 000; b =
1, 2, . . . , B for each split.

Given the above simulation algorithm, there are several choices

to be made at each step. In step (1), we must select the lengths of

the branches, x, in the model species tree. We considered branches

of length 0.5, 1.0, and 2.0 coalescent units. A branch of length 0.5

coalescent units is very short, and corresponds to a case in which

there will be widespread incomplete lineage sorting, making species

tree inference difficult. A branch of length 2.0 coalescent units is

longer and will result in much lower rates of incomplete lineage

sorting, resulting in an easier species tree inference problem.

In Step (2), we need to choose the gene length, n. In simulating

unlinked SNP data, we used g = 5, 000 and n = 1 (corresponding

to 5,000 unlinked SNPs) and for the multi-locus setting, we

considered g = 10 and n = 500 (corresponding to 10 genes,

each of length 500 sites). Further, step (2) requires choice of
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Chifman and Kubatko

Table 1. Time information for the simulation study with results shown in

Figure 6. All results represent the average time in seconds (over 1,000

replicates) to carry out the computation of three SVD scores for the

simulated data sets, and were obtained using the UNIX time command.

Branch Number of Real User System

Lengths Sites Time Time Time

0.5 1,000 0.0495 0.0092 0.0075

0.5 10,000 0.0566 0.0155 0.0077

1.0 1,000 0.0502 0.0105 0.0074

1.0 10,000 0.0564 0.0163 0.0076

2.0 1,000 0.0500 0.0119 0.0061

2.0 10,000 0.0553 0.0173 0.0064

under the GTR+I+Γ model, however, bootstrap support values for

the true split are sometimes lower, with the worst results occurring

when the branch lengths are short. Overall, however, the bootstrap

appears to give a reliable measure of support for the true split,

particularly when the model assumptions are satisfied.

Figure 6 examines the performance of the method for unlinked

SNP data with varying numbers of sites. In particular, unlinked

SNP data sets were generated with either 1,000, 5,000, or 10,000

total sites under model species trees with branch lengths of 0.5, 1.0,

or 2.0 coalescent units. These results demonstrate that the method

performs well even for smaller sample sizes. However, it is clear

that as the sample size becomes larger, the separation between the

scores for the valid and non-valid splits increases. This is to be

expected, because the matrix FlatL1|L2
(P̂ ) will better approximate

FlatL1|L2
(P ) for larger sample sizes.

Table 1 gives timing results for the simulations carried out

in Figure 6. Because the main work undertaken by the method

involves counting the number of site patterns in order to build the

FlatL1|L2
(P̂ ) matrix, the time should be approximately linear in

the number of unique site patterns in the data, which is related to

both the total number of sites in the data matrix and the overall

scale of time represented by the phylogeny. The results in Table

1 demonstrate that the time is less than linear in the total number of

site patterns, as expected, and that the computations can be carried

out very rapidly (e.g., the computation of three SVD scores for data

matrices of 10,000 sites takes less than 0.1 seconds).

4.2 Potential Use for Species Tree Inference

These results make it clear that the SVD score is a highly accurate

means of inferring the correct, unrooted phylogenetic tree among a

set of four taxa. We note that the SVD score is extremely easy to

compute. It requires only counting the site patterns and constructing

the matrix FlatL1|L2
(P̂ ). Computing singular values of a 16× 16

matrix is a standard calculation that any mathematical or statistical

software package can easily implement. Our software, SVDquartets,

carries out both steps using a PHYLIP-formatted input file.

Given the efficiency with which computations can be carried

out in the four-taxon setting, this method is a good candidate for

estimation of species trees for larger taxon sets. We propose that

the method could be used in the following way. For a data set

with T taxa, form all samples of 4 taxa, or sample sets of 4 taxa

if T is large. For each sample of four taxa, infer the valid split

using the SVD score. Using the collection of inferred valid splits,

construct a species tree estimate using a quartet assembly method.

Substantial previous work and software exist for the problem of

quartet assembly (see, e.g., Strimmer and von Haeseler (1996);

Strimmer et al. (1997); Snir and Rao (2012)). We give the results

of using this method for inferring a tree consisting of several North

American rattlesnake species and for inferring a tree from SNP data

for several soybean species below.

This method has tremendous potential to improve the set of

tools available for species tree inference. Unlike summary statistics

methods, which are known to be quick but fail to model variability

in individual gene tree estimates, this method uses the sequence

data directly, thus incorporating all sources of variability. The

other existing methods based on sequence data (BEST, *BEAST,

and SNAPP) all rely on Bayesian MCMC methods, and thus

require long computing times and the difficult problem of assessing

convergence. Our method can be carried out rapidly, and is easily

parallelizable, as each quartet can be analyzed on a separate

processor. Our method can handle both unlinked SNP and multi-

locus data, again providing an advantage over existing sequence-

based methods, which can handle either SNP (SNAPP) or multi-

locus (BEST and *BEAST) data. Bootstrapping can be easily

implemented to provide a means of quantifying support for the

estimated phylogeny.

However, there are several issues with this method that will need

to be examined in future work. First, the number of quartets to be

sampled needs to be specified in cases where the number of taxa

is too large to examine all possible quartets. This number should

necessarily increase with increasingly large taxon samples, but we

have not yet rigorously examined how to select this. In addition, it

is worth pointing out that the method estimates the topology only.

In some studies, other parameters associated with the evolutionary

process, such as branch lengths and effective population sizes,

will also be of interest. One possibility is that the tree topology

could first be estimated with this method, and then fixed in a

subsequent MCMC analysis with either *BEAST or SNAPP, thus

greatly reducing the complexity of that analysis. Finally, we have

not yet conducted a thorough simulation study of the inferential

accuracy of this method for full species tree inference, which will

be the topic of future work.

4.3 Application to Rattlesnake Data

The results of the analysis of the rattlesnake data set are shown in

Figure 7, with bootstrap support values above 50% indicated on the

appropriate nodes. In the case of the lineage tree (Figure 7(a)), the

method identifies the two major species S. catenatus and S. miliarius

with high bootstrap support, and additionally groups the subspecies

S. c. catenatus as monophyletic. In the species tree in Figure 7(b),

we again see that the method correctly identifies the two species

with high bootstrap support, and is able to differentiate subspecies

S. c. catenatus from a clade containing the other two subspecies

within this group. Within species S. miliarius, there is not strong

support for the subspecies relationships.

These results are consistent with the earlier analyses of Kubatko

et al. (2011), in which strong support for the delimitation of S. c.

catenatus as a distinct species was found using several methods of

coalescent-based species tree inference. Those analyses also found
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Fig. 8. Results of the analysis of the soybean data. (a) Tree estimated by SVDquartets with bootstrap support values. (b) Maximum clade credibility tree

estimated using SNAPP.
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